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Abstract. We address the problem of designing efficient procedures for
counting models of Boolean formulas and, in this task, we establish new
polynomial classes for #2SAT determined via the topological structure
of the underlying graph of the formulas.

Although #2SAT is a classical #P-complete problem, we show that,
if the depth-first search of the constraint graph of a formula generates
a free tree and a set of fundamental independent cycles, this is, there
are not common edges neither common nodes among such fundamental
cycles, then to count the number of different models of the formula can
be computed in polynomial time, in fact, in linear time.

The new polynomial class of 2-CF’s brings us a new paradigm for solv-
ing #SAT, and our method to count models could be used to impact
directly in the reduction of the complexity time of the algorithms for
other counting problems, i.e. for counting independent sets, counting
colouring of graphs, counting cover nodes, etc. We present just one of
the applications of this counting results for realizing the incremental re-
compilation of an initial knowledge base X’ with a new formula F, in an
inductive and efficient way.

Keywords: #SAT Problem, Counting Models, Incremental Recompila-
tion of Knowledge, Propositional Inference.

1 Introduction

As is well known, the propositional Satisfiability problem (SAT problem) is a
classical NP-complete problem, and an intensive area of research has been the
identification of restricted cases for which the SAT problem, as well as its opti-
mization and counting version: MaxSAT and #SAT problems respectively, can
be solved efficiently.

SAT and #SAT are a special concern to the Artificial Intelligence (Al) field,
and they have a direct relationship to Automated Theorem Proving as well as in
approximate reasoning. For example, #SAT has applications in the estimating
of the degree of reliability in a communication network, for computing the degree
of belief in propositional theories, in Bayesian inference, in a truth maintenance
systems, for repairing inconsistent databases [1,3, 13, 15]. The previous problems
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come from several Al applications such as planning, expert systems, data-mining,
approximate reasoning, etc.

The #SAT problem is at least as hard as the SAT problem, but in many
cases, even when SAT is solved in polynomial time, no computationally effi-
cient method is known for #SAT. For example, the 2-SAT problem (SAT re-
stricted to consider formulas where each clause has two literals at most), it can
be solved in linear time. However, the corresponding counting problem #2-SAT
is a #P-complete problem. #2-SAT continues being a #P-complete problem if
we consider only monotone formulas or Horn formulas (14]. Even more, #SAT
restricted to formulas in the class (2,3u)-CF (the class of conjunctions of 2-
clauses where each variable appears three times at most) is also #P-complete
[13], while their respective SAT versions are solved efficiently.

The maximum polynomial class recognized for #2SAT is the class (< 2,2u)-
CF (conjunction of binary or unitary clauses where each variable appears two
times at most) [13,14]. Here, we extend such a class for considering the topo-
logical structure of the undirected graph induced by the restrictions (clauses) of
the formula.

We extend here some of the procedures presented in [4,5] for the #2-SAT
Problem, keeping the polynomial time of the algorithms we determine class of
2-CF where #2-SAT is tractable. In fact, we determine a new polynomial class
for #2-SAT and show that this new class is not restricted by the number of
occurrences per variable of the given formula, but rather, by the topological
structure of its constraint graph.

2 Preliminaries

Let X = {z1,...,Zn} be a set of n Boolean variables. A literal is either a variable
z or a negated variable Z. As is usual, for each z € X, 2% =7 and z! = z. We
use v(l) to indicate the variable involved by the literal I.

A clause is a disjunction of different literals (sometimes, we also consider a
clause as a set of literals). For k € IN, a k-clause is a clause consisting of exactly
k literals and, a (< k)-clause is a clause with k literals at most. A unitary clause
has just one literal and a binary clause has exactly two literals. The empty clause
signals a contradiction. A clause is tautological if it contains a complementary
pair of literals. From now on, we will consider just non-tautological and non-
contradictory clauses. A variable £ € X appears in a clause c if either = or T is
an element of c. Let v(c) = {z € X : z appears in c}.

A Conjunctive Form (CF) is a conjunction of clauses (we also consider a CF
as a set of clauses). We say that F' is a monotone CF if all of its variables appear
in unnegated form. A k-CF is a CF containing only k-clauses and, (< k)-CF
denotes a CF containing clauses with at most k literals. A ku-CF is a formula
in which no variable occurs more than k times. A (k, sp)-CF ((< k, su)-CF) is
a k-CF ((< k)-CF) such that each variable appears no more than s times. In
this sense we have a hierarchy given by the number of occurrences by variable,
where (k, su)-CF is a restriction of (k, (s+1)u)-CF, and a hierarchy given by the
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number of literals by clause, where (< k, su)-CF is a restriction of (< (k+1), sp)-
CF. For any CF F, let v(F) = {z € X : z appears in any clause of F}.

An assignment s for F is a function s : v(F) — {0,1}. An assignment can
be also considered as a set of no complementary pairs of literals. If [ € s, being
s an assignment, then s makes ! true and makes [ false. A clause c is satisfied by
s if and only if cN's # 0, and if for all l € ¢, | € s then s falsifies c.

A CF F is satisfied by an assignment s if each clause in F is satisfied by s.
F' is contradicted by s if any clause in F is contradicted by s. A model of F is
an assigment over v(F') that satisfies F.

Let SAT(F) be the set of models that F has over v(F). F is a contradiction
or unsatisfiable if SAT(F) = (. Let p,(r)(F) = |SAT(F)| be the cardinality of
SAT(F). Given F a CF, the SAT problem consists of determining if F' has a
model. The #SAT consists of counting the number of models of F defined over
v(F). We will also denote p,(ry(F) by #SAT(F). When v(F) will clear from
the context, we will explicitly omit it as a subscript.

Let ##LANG-SAT be the notation for the #SAT problem for propositional
formulas in the class LANG-CF, i.e. #2-SAT denotes #SAT for formulas in 2-
CF, while #(2, 21)-SAT denotes #SAT for formulas in the class (2,2u)-CF. FP
denotes the class of functions calculable in deterministic polynomial time, while
#P is the class of functions calculable in nondeterministic polynomial time. The
#SAT problem is a classical #P-complete problem, similarly for its restrictions

#2-SAT, #(2,3u)-SAT and for (2,3u)-MON and (2,3x)-HORN, monotone and
Horn formulas, respectively.

The Graph Representation of a 2-CF

Let X be a 2-CF, the constraint graph of X' is the undirected graph Gx =
(V, E), with V = v(Z) and E = {(v(z),v(y)) : (z,y) € T}, that is, the vertices
of Gz are the variables of 2 and for each clause (z,y) in X there is an edge
(v(z),u(y)) € E. Given a 2-CF X, a connected component of Gy is a maximal
subgraph such that for every pair of vertices z, y, there is a path in Gz from z to
y. We say that the set of connected components of X are the subformulas corre-
sponding to the connected components of G . We will denote [n] = {1,2,...,n}.

Let ~ be a 2-CF. If F = {Gy,...,G,} is a partition of X (over the set
of clauses appearing in Z), i.e. | _IG’,, = X and Vp,p2 € [r], (o1 # P2 =
Gy, NG,, = 0], we will say that Fisa partition in connected components of X

if V = {v(G1),...,v(Gr)} is a partition of v(X).
@y G,} is a partition in connected components of X, then:
o) (Z) = (oG (G1)] -+ -+ [Bu(G.)(Gr)] (1)

In order to compute p(X), first we should determine the set of connected
components of %, and this procedure is done in linear time [14]. The differ-
ent connected components of G5 conform the partition of X in its connected
components. Then, compute p(X) is translated to compute py(c)(G) for each
connected component G of £. From now on, when we mention a formula X, we
suppose that X is a connected component. We say that a 2-CF X' is a cycle, a
chain or a free tree if G5 is a cycle, a chain or a free tree, respectively.
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3 Linear Procedures for subclasses of #2-SAT

Our purpose is to identify the restrictions over the class of (< 2)-CF’s under
which the hard problem #2-SAT either remains hard or become easy. We suppose
that G is the constraint graph of a connected component type given by 2 a
(< 2)-CF. We present the different typical simple graphs for Gx and design
linear procedures to compute #SAT(X).

3.1. If Gx is acyclic

First, let us consider that Gz = (V,E) is a linear chain. We write the associ-

ated formula ¥, as: X' = {cy,...,cm} = {{yo vyl 2 X ,ygz},...,{yf,’," 1ayni"}}’
without a loss of generality (ordering the clauses and its literals, if it were neces-
sary) in such a way that |v(c;)Nv(cis1)| = 1,7 € [m—1], and §;,€; € {0,1}, i =
1. m.

As X has m clauses then |[u(X)| = n = m + 1. We will compute p(%) in
base to build a series (o, 3;), ¢ = 0,..., m,where each pair is associated to the
variable y; of v(X). Te value o; indicates the number of times that the variable
y; is "true’ and G; indicates the number of times that the variable y; takes value
false’ over the set of models of . Let f; a family of clauses of ~' builds as
follows: fi = {c;}j<i, i € [m]. Note that f; C fis1, 1 € [m —1]. Let SAT(f;) =
{s: s satisifies f;}, Ai = {s € SAT(f;) : y; € s}, B; = {s € SAT(f;) : §; € s}.
Let a; = |A;|; Bi = |Bi| and p; = |SAT(f:)| = a; + B;. From the total number
of models in p;,i € [m], there are «; of which y; takes the logical value 'true’
and G; models where y; takes the logical value false’.

For example, ¢ = (y&',3%), fi = {c1}, and (ao, fo) = (1,1) since yo can
take one logical value ’true’ and one logical value 'false’ and with whichever of
those values it would satisfy the clause ¢; which is the only clause of £ where o
appears. SAT(f1) = {v5'v", 5o~ “v1"95'vi ="'}, and (a1, 1) = (2,1) if &) were
1 or rather (a1, 1) = (1,2) if §; were 0.

In general, we compute the values for (a;,3;) associated to each node x;,
i = 1,..,m, according to the signs (¢;,d;) of the literals in the clause c;, by the
next recurrence equations:

(Bs-1 Q=1 Fii-1) if (51)51) = (0,0)
) (i1 + Bi—1,Bi-1 ) if (e, 6:) = (0,1)
QI (az 1 yQi—1 +ﬂ1 l) lf (51161) = (1)0)
(0'1 1 +ﬂ1 1,Qi-1 ) if (61‘,61;) = (1) 1)
(G111~ 1) if (e:,0:) = (an)
=5 (ll-z l)ﬁl— ) if (61, ) = (0) 1) (2)
(az 1,)Mi— l) if (En ) T (1,0)
(pi-1,00-1) if (€:,6:) = (1, 1)

Note that, as X = f,, then u(X) = pm = am + Pm. We denote with * —’ the
application of one of the four rules of the recurrence ( 2), so, the expression
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(2,3) — (5,2) denotes the application of one of the rules (in this case, the rule

4), over the pair (ai—1,8i—1) = (2,3) in order to obtain (a;,F;) = (ai-1 +
Bi—1,i—1) = (5,3).

Example 1 Let ¥ = {(1}0,2}1), (51,52),(5,53), ($3,54),(E4,.’E5)} be a 2-CF
which conforms a chain, the series (a;, (i), € [5], is computed as: (ao,Bo) =
(1,1) — (ai1,B81) = (2,1) since (e1,6:) = (1,1), and the rule 2 have to be ap-
plied. In general, applying the corresponding rule of the recurrence ( 2) accord-
ing to the signs ezpressed by (e;,d;),i = 2,...,5, we have (2,1) — (a2,82) =
(1,3) — (as,B83) = (3,4) — (as,8s) = (3,7) — (as,85) = (10,7), and then,

Sp0 R O»0050

a0 @n 1,3) 3,9 (&A)] (10,7)

Fig. 1. The constraint graph for the formula of the example 1

If X is a chain, we apply ( 2) in order to compute p(X) and this procedure
has a linear time complexity over the number of variables of X, since ( 2) is
applied while we are traversing the chain, from the initial node o to the final
node y,,.

There are other procedures for computing p(%) when Z is a (2,2p)-CF (13,
14], but these last proposals do not distinguish the number of models in which
a variable z takes value 1 of the number of models in which the same variable
x takes value 0, situation which is made explicit in our procedure through the
pair (a, 3) labeled by z. This distinction over the set of models of ¥ is essential
when we want to extend the computing of (X)) for more complex formulas.

Example 2 Suppose now a monotone 2-CF Y with m clauses and where Gr is a
linear chain. I.e T = {(z0, 1), (z1,2), -+ - (Tm—1,Tm)}. Then, at the beginning
of the recurrence ( 2), (ap,Bo) = (1,1) and (a1,B1) = (2,1) since (e1,01) =
(1,1), and in general, as (e;,6;) = (1,1), for i € [m], then the rule: (ai, Bi) =
(ti—1 + Bi—1,qi_1) is always applied while we are scanning each node of the
chain, thus the Fibonacci numbers appear!.

M1 =a; + P =ap+ fo+ a =3,
1% =az+ 0=+ =5,
(1i)iz2 = i + Bi = pi—1 + pi-2

The sequence: 0,1,1,2,3,5,8,13,21, 34, ..., in which each number is the sum
of the preceding two, is denoted as the Fibonacci series. The numbers in the se-
quence, known as the Fibonacci numbers, will be denoted by F; and we formally
define them as: Fy = 0; Fy = 1; Fiyp = Fiy1 4 F;,i > 0. Each Fibonacci number
can be bounded up and low by ¢=2 > F; > ¢i~1,i > 1, where ¢ = 31+ \/(5))
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is known as the ’golden ratio’. Any F_ibonacci number F; can be computed by
the equation F; = CloseStInteger(%) = %)—

The Fibonacci series appear in many applications of the mathematics and it
presents interesting properties that they are reflected in the nature, for example,
it has been shown that some leaves of the trees present a growth in hairspring
as the series of Fibonacci. Thus, applying the Fibonacci series for computing
the number of models in the formula F of the example 2, we obtain the values
(04, 8:),i = 0,...,5: (1,1) = (2,1) — (3,2) — (5,3) — (8,5) — (13,8), and
this last series coincides with the Fibonacci numbers: (Fy, Fy) — (F3, F2) —
(Fy, F3) — (Fs, Fu) — (Fs, F5) — (Fy, Fs). We infer that (o, 8;) = (Fiy2, Fit1)
and then p; = Fiy2 + Fiy1 = Fiy3,i =0,...,m. Le. for m = 5, we have u(F) =
us = F7 + Fg = Fg = 21.

Theorem 1 Let X be a monotone 2-CF with m clauses such that Gx is a chain,

m+3
then: #SAT(X) = Fm+3 = ClosestInteger [# (‘+2 5)

Let Gx be a free tree: Let X be a Boolean formula with n variables and m
clauses and where there are no cycles in Gz = (V, E). Traversing G5 in depth-
first build a free tree, that we denote as Az, whose root node is any vertex v € V
with degree 1, and where v is used for beginning the depth-first search. The next
procedure give us a recursive view of the depth-first search, which we show in
order to present the different moments of a node during the search.

Procedure dfs(Gx, V)

1. Mark v as discovered

2. For each vertex w such that there is an edge (v,w) € Gz
(a) IF w is undiscovered then dfs(Gs,w)

3. Mark v as finished

Note that since Gz is a free tree, then all its edges are tree edges and, there
are no back edges in Ag. We denote with (o, B,) the associated pair to a node
v (v € Ax). We compute p(X) while we are traversing G5 in depth-first, for the
next procedure.

Algorithm Count_Models_for_free_trees(Ay)

Input: Az the tree defined by the depth-search over Gz

Output: The number of models of

Procedure: Traversing Ay in depth-first, and when a node v € Ayx is left
(marked as ”finished” in dfs() ), assign:

1. (ay,By) = (1,1) if v is a leaf node in Ay.

2. If v is a father node with an unique child node u, we apply the recurrence (2)
considering that (c—1,8i-1) = (@, Bu) and then (ai—1,8i-1) — (o, Bi) =
(ava ﬂu)
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3. If v is a father node with a list of child nodes associated, i.e., uy, uz, ..., ux
are the child nodes of v, then as we have already visited all child nodes, then
each pair (ow;,By;) j = 1,...,k has been defined based on ( 2). (o, ,Bv,) is
obtained by applying (2) over (ctj—1,8i-1) = (@, , Bu,)- This step is iterated
until computes the values (ay,,By;), j = 1, ..., k. Finally, let o, = H;.;l Qy;
and B, = H_?:l ﬁv,--

4. If v is the root node of Ax then returns(a, + 3,).

This procedure returns the number of models for £ in time O(n 4+ m) which
is the necessary time for traversing Gz in depth-first.

Fig. 2. The free tree graph for the formula of the example 3

Example 3 Ifz = {(xla .’122), (I21 1‘3)’ (m2’I4)a (:Bg,.’l:s), (214,.’136), (IG’ 1:7)’ (Is, :Bg)}
is a 2-CF, we consider the depth-first search starting in the node Z1. The free
tree generated by the depth-search as well as the number of models in each level
of the tree is shown in Figure 2. The procedure Count_Models_for-free-trees

returns for oz, = 41, 3;, = 36 and the total number of models is: #SAT(X) =
41 + 36 = 77.

If there are unitary clauses in X, ie. U C £ and U = {(ll),(lz),:--:(lk)}'
Then, when the recurrence ( 2) is being applying over a node Z; of G, it has to
be checked if z; € v(U) or not. If z; ¢ v(U) we only apply the recurrence, but
if z; € V(U) then (o4, ;) = {Egﬂo)) :g Ezg 2 g

] 1 S =

Since a unitary clause uniqu;ly determines the values of its variable is not
needed to consider the opposite value for the variable.

Let U’ = {(!) : v(l) € v(U)} and let U” = U — U’. If there are no contrIa-
dictory pairs of unitary clauses in U” then p(U"”) = 1; otherwise #(_U =0 r:
base to (1), p(ZUU) = u(ZUU’)-p(U") since Gpuy: and Gy are independen
connected components.

3.2. If Gx contains cycles

As is known, #SAT for formulas in the class (2, 3p)-CF is a #P -compleFe prf(r) Z
lem [14], for this class, if we discard the class of formulas X where Grisa
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tree (because for this subclass #SAT is computed in linear time), remains in the
class just cycle formulas. In this section we show that even for cycle formulas,
there is a tractable subclass for #2SAT.

First, let us consider that X is a (2,2p)-CF such that Gz = (V,E) is a
simple cycle with m nodes, that is, all the variables in v(X) appear twice,

V] = m = n = |E| Ordering the clauses in X in such a way that | v(c;) N
v(civ1) |= 1, and c,1 = ¢;, whenever i; = i mod m, hence yo = ym, then
Y= {C. = {yi~ 1,y, }} , where 6;, ¢; € {0,1}. Decomposing X' as &' = X'Ucm,
where X' = {ci,.. ,cm_l} is a chain and c¢m = (y™,,y5") is the edge which

conforms with Gz the simple cycle: yo,¥1, .-, Yym—1,Y0- Then, we can apply the
linear procedure in (3.1) for computing p(X’).

Every model of X’ determined logical values for the variables: y,»—1 and
yo since those variables appeared in v(X’). Any model s of X’ satisfies cm if
and only if (y179" ¢ s and yl %~ ¢ s), this is, SAT(Z' Ucm) C SAT(X),
and SAT(Z' U cm) = SAT(X') — {s € SAT(Z') : s falsifies cm}. Let ¥ =
2y {(yl e W 4m)} then, u(Y) is computed as a chain with two unitary
clauses, and then:

#SAT(Z) = p(£) = p(Z') = u(Y) = w(Z') = p(E' A W7 A (o ™)) (3)

For example, let us consider X' to be a monotone 2-CF with m clauses such
that Gy is a simple cycle. ¥ = {c, = {yit 275" }} , where d;,¢; = 1, | v(ci) N
i=1

v(cir1) |= 1, and ¢, = c;, whenever i; = iz mod m, hence yo = Ym- Let
%' = {e1,.sCm—1}, then: p(X) = pm—1 = Fn-143 = = Fy42 for theorem 1
and being F; the i-esimo Fibonacci number. As €m = 0m = 1 and p(Y) =

p(Z' A(Fo) A(Tm—1)) is computed by the series: (a0, fo) = (0, 1) = (Fo, F1) since
@o) € Y, (a1,41) = (1,0) = (F1, R); (o2,62) = (1,1) = (F2, F1); (a3, B3) =
(2,1) = (F3,F2), and in general (a;, 8;) = (Fi, Fi—1), then for the clause ¢m—1,
(am—-1,8m- 1) = (Fm-1, Fn—~2), then P'(Y) = Pm-1 = Fm-2 since (y-m) e ¥,
Finally, #SAT(Z) = w(X) = w(2') — w(Y) = Fpnt2 — Fn-2. On the other
hand; Fm+2_Fm—2 =Fm+l +Fm_ m—2=Fm+1 + F, —-1+Fm—2—Fm—2 =
Fm+l + F, ) Fm+2 'Fm—1~

Theorem 2 Let £ be a monotone 2-CF with m clauses and where Gs is a
simple cycle, then: #SAT(X) = Fny2 — Fn—2 = Fng1 + Fn-1.

Note that the combination of the procedure for free trees and the processing
of cyles (equation 3) can be applied for computing #SAT (L) if Gz is a graph
where the depth-first search generates a free tree and a set of fundamental cycles,
such that any fundamental cycle is independent with any other fundamental
cycle, that is, there are no common vertices neither common edges among any
pair of fundamental cycles.

Thus, the procedures presented here, for computing (%) being ~' a Boolean
formula in 2-CF and where Gx is a cycle, a chain, a free tree, or a free tree
union independent cycles, each one runs in linear time over the length of the
given formula, and they have the complexity time O(m + n).
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The class of Boolean formulas F' such that its depth-first search builds a
free tree and a set of fundamental independent cycles, such class conforms a
new polynomial class for #2-SAT. This new class is a superclass of (2, 2u)-CF,
and it has not restriction over the number of occurrences of a variable over the
formulas, although (2, 3u)-CF is a #P-complete problem.

4 Applying #SAT to Propositional Inference

We now turn to one important application of the results of the previous section
into the area of propositional reasoning. A generalization of deductive inference
which can be used when a knowledge base is augmented by, e.g., statistical
information, is to use the inference of a degree of belief as an cffort to avoid the
computationally hard task of deductive inference [13].

The approach to compute the degree of belief of an intelligent agent, consists
of assigning an equal degree of belief to all basic ”situations”. In this manner, we
can compute the probability that £ (an initial knowledge base which involves
n variables) will be satisfied, denoted by P, as: Ps = Prob(X = T) = &2(7222
where T stands for the Truth value and Prob is used to denote the probability.

We are interested in the computational complexity of computing the degree
of belief in a propositional formula F with respect to X, such as the fraction
of models of X that are consistent with the query F, that is, the conditional
probability of F' with respect to £, denoted by Pg| 5, and computed as: Ppig =

Prob((ZAF)=T |5 =T)= 4200,

We want to determine the class of formulas for ' and F where the degree
of belief Pp|5 can be done efficiently, in such a way that we can realize the
incremental recompilation of knowledge of 2 by F in an efficient way.

Many approaches for incorporating dynamically a single or a sequence of
changes into an initial Knowledge Base (KB) have been proposed (3,7,9,11,
12]. Almost all these proposals are plagued by serious complexity-theoretic im-
pediments, even in the Horn case [7,9]. More fundamentally, these schemes are
not inductive, in the sense that they may lose in a single update any positive
properties of the structure of the KB.

Thus, in order to perform the computing of the degree of belief Pp|s in
polynomial time, we begin considering a knowledge base X in 2-CF and where
Gy is a free tree and if there are cycles in Gz, these are independent cycles,
since as we have shown in the previous section that #2-SAT for this class of
formulas is computed in polynomial time.

We also suppose that the KB X is a satisfiable 2-CF and p(X) > 0 and then
Ppig = L‘_(f(_)’;){'l is well-defined. We will show here how to compute p(Z A F),
and for this, we consider the different cases for F.

4.1. Computing the Degree of Belief in Basic Formulas

Let F = {(l)}, where v(l) € v(X). We have shown in chapter 3 how to compute
(XU {(l)}). Notice that if Z' A F' is unsatisfiable then Pz =0
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If F={()} and v(!) ¢ v(X), and as we have considered the degree of belief
in F given X as a conditional probability, then it makes sense to update the
degree of belief for updating the probability space where Pp|z is computed [6].

Incremental Knowledge Process: When new pieces of information that did
not originally appear in the sample space must be considered then, we will
introduce into the area of updating the degree of belief for making an extension
of the original probability space [8].

Let F = (/\;=1 l;) a conjunction of literals where there are variables that do
not appear in the original knowledge base . Let A = {(I) € F : v(l) ¢ v(X)},
t =] A | and | v(X) |= n. We consider F as a set of literals (the conjunction
is understood between the elements of the set), let F/ = F' — A. There are 2"
assignments defined over v(X) and 2"** assignments defined over v(X) U v(F),

then we update the domain of the probability space over which we compute
p(EAF)

Pp|x, as: Ppjg = Prl‘,’zf”;;” = f_(;;:;_ = ‘;fi’(\g)) Since G4 and Gxyfp are two
independent connected components and p(A;c 4 1) = [;c4 (1) =1, then:
BENF) - p(Nieal) _ m(EAF)
Ppiz = = (4)
2t pu(2) 2t p(X)

Example 4 Let L = {($01$l)1(xl)IZ)a($2,x3)a(53a54)a(§4’$5)}y and F =
{z0,T3,28}. A ={l € F:v(l) ¢ v(2)} = {xs}, and t =| A |= 1. We can
compute p(E A F) according of the procedure (8.1) then, (a0, Bo) = (1,0), since
(zo) € F, and then (a1,51) = (1,1). (a2, B2) = (c1 + P1,01) = (2,1) — (3,2) =
(as, B3), but this last pair must be changed since v(z3) is the label of (as, Ba)
and appears as a negated variable in F, then (a3,03) = (0,03) = (0,2). After
(04, Bs) = (B3, 3 + B3) = (2,2) — (4,2) = (a5, P5). And ps =6 = (T AF) =
u(Z AF') = p(Z A(zo) A (Z3)), applying ( 4) since xg does not appear in v(X).
HEANZ1 L) p(EA(zo)A(Za)A(zs)) _ _6 6

Enjin— 20u(%) 20.1(2) =219 ~ 38"

To compute u(X A F’) as well as u(X) is done in linear time by the linear
procedure of chapter 3, then ( 4) is computed in linear time too.

Let now a clause, F' = (V’f=l l;). Considering F' as a set of literals, let
A={l e Flu(l) ¢ v(X£)},t =| A|, and let F' = F — A. We can compute
(L AF), as:

W(ENF) = p(Z)-2' - w(EATF) (5)

We are computing u(Z A F) by extending the models of X' for considering the
variables which are in v(F') however they are not in v(X), and we are eliminating
the assignments which falsify X U F.

As, F = (\/;;1 l;) then F = (/\j.‘=li,-) = (Azer E A Ngea T) since v(4) N
(v(Z)Ur(F')) = 0 we could consider G 4 as a connected component independent
to Gsupr, where F/ = /\J:EFAU(J:)EU(E) Z. According to (1), wu(ZAF) = pu(Z A
F') . u(A) = p(E A F’) since pu(A) = 1, then:

po . MEAF) _uZ)-2 - wEAF) _ | MEAF)
RIEC (T 2t u(2) e gk

(6)
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Notice that when F is a phrase or a clause there is no restriction on the
number of literals that F' can contain. Thus, ( 6) permits us to solve #SAT
for formulas (¥ U F) in a greater hierarchy than (< 2,3u)-CF, for considering
clauses in F' with more than 2 literals.

Some methods for choosing among several possible revisions are based on
some implict bias, namely a priory probability that each element (literal or
clause) of the domain theory requires revision. Opposite to assign the probabili-
ties to each element F of the theory X' by an expert or simply chosen by default
[10], we have shown here a formal and efficient way to determine such proba-
bility based on the degree of belief Pp|s, with the additional advantages that
such probabilities could be adjusted automatically in response to newly-obtained
information.

Suppose that ' is a (< 2)-CF where G is a free tree or it contains a set of
cycles such that any pair of such cycles do not share edges neither nodes. The
last objective that we approach here, consist on determining the structure of a
new formula F (set of clauses) such that G gyr keeps the same conditions of G g,
in order that #SAT (X U F) remains computing in polynomial time complexity
and the incremental knowledge process will be inductive.

IF for each c; € Fyi=1,...,| F |

— ¢; is a unitary clause, or

= v(c;) —v(Z) #0, or

— ¢; adds a new fundamental cycle en Gz, this is, ¢; conforms a new cycle but
the set of cycles in G5 U ¢; do not share edges neither nodes.

Then #SAT (X UF) remains computing in polynomial time using the procedures
presented in chapter 3.

5 Conclusions

#SAT for the class of Boolean formulas in 2-CF is a classical #P-complete
problem. Until now, the maximum subclass of 2-CF where #2SAT is solved
efficiently is for the class (2,2u)-CF, which are the Boolean formulas in 2-CF
where each variable appears twice at most.

We present different linear procedures to compute #SAT for subclasses of 2-
CF. Let X be a 2-CF where G5 (the constraint undirected graph of X' ) is acyclic
or, a free tree union independent cycles, we show that #SAT(X) is computed
in linear time over the length of the formula X.

This new polynomial class of 2-CF contains to the class (2,2p)-CF, and it
does not have restriction over the number of occurrences per variable in the given
formula, although (2,3p)-SAT is a # P-complete problem. Then, this new class
of Boolean formulas brings us a new paradigm for solving #SAT, and would
be used to incide directly over the complexity time of the algorithms for other
counting problems.

We present one application of our results in the propostional inference area,
showing conditions that permit to an intelligent agent, compute the degree of
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belief in a new formula F given an initial knowledge base X and such that it
could be done in polynomial time over the length of (X' U F).
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